
Logup*: faster, cheaper logup argument for

small-table indexed lookups

Lev Soukhanov ∗

May 2025

Abstract

Logup argument (in it’s modern GKR version, as described in
eprint:2023/1284 paper) is a logarithmic derivative-based unindexed
lookup argument. An indexed lookup argument can be constructed
from unindexed one using standard trick.

In this short informal note, we explain a different way of obtaining
indexed lookup from logup, which does not commit any additional
arrays of the size of the indexing array. That makes it particularly
amenable for lookups in small tables (giving, to our knowledge, a first
argument with this property).

Additionally, this argument is not subject to numerator overflow
issue that requires additional mitigation described in eprint:2024/2067.

Improvements to SPARK / Lasso protocols are also discussed.

1 Introduction

Logup argument, as described in [4] [5], is a following unindexed lookup
argument: for two arrays X,T with values in some cryptographically large
field F of characteristic p we wish to prove that X ⊂ T (as sets). For
simplicity of exposition, also assume that Y ’s elements do not repeat.

Denote |X| = n, |T | = m.
Prover commits these arrays and additionally commits an array acc of

size m which represents access counts - acc[i] is the number of times that
the value T [i] is visited by X. Assume, additionally, that |X| < p, so these
access counts never overflow.

∗[[alloc]init]. email:0xdeadfae@gmail.com

1

Then, it is enough to check, for a random challenge c ∈ F that∑
0≤i<n

1

c−X[i]
=

∑
0≤j<m

acc[j]

c− T [j]

Soundness error of this argument is n+m
|F| , and the check itself is nowadays

usually done using GKR protocol as described in [5].
Logup is sometimes used in an indexed lookup form; say as a drop-

in replacement for permutation argument lookups in Lasso [8] and [6]. In
these cases, a standard reduction of indexed lookup to non-indexed lookup
is typically used.

Let table T be as before and let I be a set of indices |I|. We denote (I∗T)
the indexed lookup of table T with indices I (also called pullback further),
defined as

(I∗T)[i] = T [I[i]]

Standard reduction does the following:

1. (Assuming I, T already committed) commit to I∗T, acc.

2. Get challenges c, γ.

3. Validate ∑
0≤i<n

1

c− (I∗T [i] + γI)
=

∑
0≤jm

acc[j]

c− (T [j] + γj)

Interpretation here is that we are actually doing an unindexed lookup
argument of the set of pairs (I[i], I∗T [i]) in a table (j, T [j]), with random
challenge γ used to fold a tuple into a single representative value.

We are mostly interested in the following setting:

1. m << n.

2. Indices live in some ”small” subset of a field that can be efficiently
committed to (maybe F is an extension field of some smaller base
field, or maybe our commitment scheme is just more efficient for small
elements).

3. Table T consists of large, essentially random elements of F (this fre-
quently happens, for example, in SPARK the table represents the eval-
uations of polynomial eqr).

2

In this regime, the logup argument has a significant overhead, commitment-
wise. In addition to the indexing array I, which is n small elements, the
prover needs to commit the array of looked up values I∗T , which is n large
elements.

Certain ad-hoc mitigations are available for elliptic curve commitments;
but for hash-based schemes, this is a significant performance killer.

We suggest an alternative protocol that doesn’t have these issues.
Acknowledgement. Author thanks Yar Rebenko, Misha Komarov,

Ron Rothblum, Srinath Setty and Liam Eagen for useful discussions that
led to this work.

2 Notation

2.1 Multilinear polynomials

We assume some familiarity of the reader with the multilinear setting. We
refer to excellent book by Justin Thaler [10], and to foundational papers on
sumcheck [3] and gkr protocol [2][9].

We will use the following notation. For an array P of size 2k we will
denote with the same letter the unique multilinear polynomial with val-
ues P (i0, ..., ik−1) = P [i0 + 2i1 + ... + 2k−1ik−1] on a boolean hypercube
(i0, ..., ik−1) ∈ Bk.

We will frequently use the inner product. For two arrays P,Q of the
same size 2k the value

⟨P,Q⟩ =
∑

0≤i<2k

P [i]Q[i] =
∑
x∈Bk

P (x)Q(x)

Evaluation of a polynomial P in a point r = (r0, ..., rk−1) can be com-
puted as an inner product with the multilinear Lagrange kernel:

P (r) = ⟨P, eqr⟩

where
eqr(x) =

∏
0≤i<k

(rixi + (1− ri)(1− xi))

We will use the sumcheck protocol. Its internal workings are not very
important here, what is important is that it is a claim reduction protocol
that, for a multivariate polynomial U reduces the claim about it’s sum∑

x∈Bk

U(x) = s

3

to a claim about its value in a challenge point

U(r) = s′

We will use the sumcheck to reduce the claim of the form ⟨P,Q⟩ to
evaluation claims of individual multilinear polynomials P and Q.

Our protocol will also have the form of claim reduction: we will avoid
committing to I∗T directly and instead we will commit to data that allows
us to evaluate it in a point r.

2.2 Pullback and pushforward

We will use the language of pullbacks and pushforwards. Let A, B be two
field-valued functions on the sets n = {0...n − 1} and m = {0...m − 1},
respectively, and let I be a mapping I : n −→ m.

Then, as already said before, a pullback of B along I is defined as:

I∗B[i] = B[I[i]]

We define a dual notion, called pushforward:

I∗A[j] =
∑

i|I[i]=j

A[i]

Lemma 1. Duality.
⟨I∗A,B⟩ = ⟨A, I∗B⟩

Proof. Expanding the definitions,

⟨I∗A,B⟩ =
∑

0≤j<m

I∗A[j]B[j] =
∑

0≤j<m

∑
i|I[i]=j

A[i]B[j] =

=
∑

0≤i<n

∑
j=I[i]

A[i]B[j] =
∑

0≤i<n

A[i]B[I[i]] = ⟨A, I∗B⟩

Another view of this duality is that pullback I∗B is the application of
matrix of pairs (i, I[i]) to B, and pushforward is an application of transposed
matrix to A.

4

3 Trading pullback on pushforward

Duality of pullback and pushforward sometimes allows replacing claims
about pullbacks with claims about pushforwards, or vice versa. Notable
example of this strategy is SPARK protocol, which trades pushforward on
pullback (though authors didn’t call it this way).

We want to go in the opposite direction. Assume that the prover had
already committed the indexing array I, and the table T , and we are now
in the situation where I∗T (r) needs to be computed. Then, we will run the
following protocol.

1. Claim evaluation value I∗T (r) = e.

2. Commit I∗eqr.

3. Notice that I∗T (r) = ⟨I∗T, eqr⟩ = ⟨T, I∗eqr⟩.

4. Run the sumcheck for the claim ⟨T, I∗eqr⟩ = e and obtain claims
T (r′) = c, I∗eqr(r

′) = c′.

5. Open T and I∗eqr.

This protocol proves the evaluation claim of I∗T (r), as long as I∗eqr was
committed correctly.

4 Pushforward proof with logup*

Assume that I, T,X, Y are committed and Y is claimed to be pushforward
Y = I∗X.

Consider the following equality for a random challenge c:∑
0≤i<n

X[i]

c− I[i]
=

∑
0≤j<m

Y [j]

c− j

Lemma 2. We claim that unless Y actually is a pushforward of X, this
equality holds with negligible probability (soundness error ≤ n+m

|F|) for a ran-
dom challenge c.

Proof. The proof is essentially the same as for normal logup (moreover,
normal logup is related as acc = I∗1). Consider the value∑

0≤i<n

X[i]

c− I[i]
−

∑
0≤j<m

Y [j]

c− j

5

as a rational function in variable c. It is easy to see by direct inspection
that this function is nonzero unless Y = I∗X (say, by counting coefficient of
the pole in each j on lhs and rhs).

It also has a degree n+m, which means that unless random challenge c
hits the root of this function, the argument will correctly catch wrong Y .

In our case we will use X = eqr. Prover commits to I, T and I∗T (but
not eqr, as verifier is capable of evaluating it by itself), and validates∑

0≤i<n

eqr[i]

c− I[i]
=

∑
0≤j<m

I∗eqr[j]

c− j

This (if the GKR protocol from [5] is used) leads to evaluation claims of
I, T, eqr, I∗eqr.

Of these, evaluation claim of eqr can be computed by verifier itself, and
evaluation claims about I∗eqr and T can be merged with claims obtained in
the sumcheck from the previous section ⟨T, I∗eqr⟩ − e.

5 Performance considerations and applications

In a small-table regime,m << n, the added cost of logup* is three sumchecks
of degree 2 and sizem (one for ⟨T, I∗eqr⟩, and two for claim reductions about
T and eqr respectively).

The advantage is the absence of a commitment of size n, moreover,
large-field commitment. For example, if F is the 5-th extension of 31-bit
field (enough to achieve 128-bit level security of logup), this commitment
increases the cost of logup 6×.

So, this transition is very justified.
Note: one might wonder, in which cases the table T actually is large-

valued. This occurs not only in SPARK protocol, but in Lasso too - while
individual tables are, typically, small-valued, one tends to do a vectorized
lookup, which also has a similar if not worse cost profile.

The main application, as we see, is the extension of sparsity-related ar-
guments, such as Twist and Shout [7] to hash-based commitment schemes:
while elliptic curve based commitments have both more efficient ways of
committing to I∗T and other ways of dealing with sparsity, hash-based
commitment schemes previously had much worse performance for sparse
polynomials. Our method is field and commitment scheme agnostic, so this
tension is finally solved.

6

Additional application is that we automatically solve (for an indexed
lookup) the overflow problem that normal logup argument had for accumu-
lators, which is complementary to [1].

References

[1] Liam Eagen and Ulrich Haböck. Bypassing the characteristic bound in
logUp. Cryptology ePrint Archive, Paper 2024/2067, 2024.

[2] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegat-
ing computation: Interactive proofs for muggles. J. ACM, 62(4):27:1–
27:64, 2015.

[3] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Al-
gebraic methods for interactive proof systems. J. ACM, 39(4):859–868,
October 1992.

[4] Shahar Papini and Ulrich Haböck. Improving logarithmic derivative
lookups using GKR. Cryptology ePrint Archive, Paper 2023/1284,
2023.

[5] Shahar Papini and Ulrich Haböck. Improving logarithmic derivative
lookups using GKR. Cryptology ePrint Archive, Paper 2023/1284,
2023.

[6] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs with-
out trusted setup. Cryptology ePrint Archive, Paper 2019/550, 2019.

[7] Srinath Setty and Justin Thaler. Twist and shout: Faster memory
checking arguments via one-hot addressing and increments. Cryptology
ePrint Archive, Paper 2025/105, 2025.

[8] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup
singularity with lasso. Cryptology ePrint Archive, Paper 2023/1216,
2023.

[9] Justin Thaler. Time-optimal interactive proofs for circuit eval-
uation. Cryptology ePrint Archive, Paper 2013/351, 2013.
https://eprint.iacr.org/2013/351.

[10] Justin Thaler. Proofs, arguments, and zero-knowledge. Foundations
and Trends® in Privacy and Security, 4(2–4):117–660, 2022.

7

